

U.S. Army Research, Development and **Engineering Command**

Mass Asymmetry and Tricyclic "Wobble" Motion Assessment Using Automated Launch Video Analysis

Edinburgh, Scotland

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Ryan Decker, PhD Joseph Donini, William Gardner, Jobin John, Walter Koenig

Analysis and Evaluation Technology Division RDAR-MEF-E, Building 94, 2nd floor. Fuze and Precision Armaments Directorate AETC, U.S. Army ARDEC, Picatinny Arsenal, NJ 07806-5000 973-724-7789 (fax: 973-724-2417), ryan.j.decker6.civ@mail.mil

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

PRESENTATION CONTENTS

UNCLASSIFIED

Background: Effect of Dynamic Imbalance

Measurement Methodology

Initial Mass Imbalance Test (June 2015)

Comparison of Results to Expected Values
- Includes follow-up test (February 2016)

Conclusions

Background: Dynamic Imbalance

155mm M110A2E1 White Phosphorus (WP) Projectile

UNCLASSIFIED

Theory:

If stored on its side at hot temperatures, the whitephosphorus (WP) fill will settle to one side, causing a permanent mass imbalance.

M110 155mm WP Projectile Shown

M110A2E1 version:

- canister of WP inside M483 155mm cargo shell

(All images taken from Globalsecurity.org)

Static vs. Dynamic Imbalance

UNCLASSIFIED

Static Imbalance

Dynamic Imbalance

If this dynamic imbalance is sufficient, high values of angle-of-attack may result inducing tricyclic ("wobble") motion.

High values of angle-of-attack cause more drag on the projectile, resulting in losses in range.

(from Carlucci & Jacobson, 2014, p. 334)

Axially Symmetric Epicyclic Motion

UNCLASSIFIED

A symmetric spin-stabilized projectile "cones" around its velocity vector at two frequencies:

Fast Oscillation: Nutation Slow Oscillation: Precession

Wobble Caused by Dynamic Imbalance

UNCLASSIFIED

A projectile with a dynamic imbalance exhibits a third frequency relative to its geometric axis and occurring at the spin-rate

Measurement Methodology

Wobble Measurement Procedure

UNCLASSIFIED

Procedure Overview (3 Steps)

- 1) Measure Actual Orientation History
- Fit & Subtract Undamped Epicyclic Motion

$$\begin{split} &\alpha_{pitch} = Fast_Oscillation + Slow_Oscillation \\ &\alpha_{pitch} = K_F \cos(\phi_{F0} + \dot{\phi}_F(x - x_0)) + K_S \cos(\phi_{S0} + \dot{\phi}_S(x - x_0)) \end{split}$$

x — downrange distance traveled (or time) $K_{F,S}$ — magnitudes of the fast and slow oscilations $\Phi'_{F,S}$ — frequencies of the fast and slow oscilations $\Phi_{0F,0S}$ — phase shifts of the fast and slow oscilations (McCoy 2009)

3) Measure magnitude of the wobble motion

Wobble Motion Measurement

UNCLASSIFIED

1) Measure Orientation history: Use Automated Flight Video Analysis (AFVA) to Measure Projectile Orientation

Process video from camera system on both sides of gun

Resolve 3D Orientation History Motion

(Decker 2013)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Automated Launch Video Demo: June 2015 M110A2E1 Test

UNCLASSIFIED

Wobble Motion Measurement

UNCLASSIFIED

2) Manually Fit Undamped Epicyclic Motion to Data

$$\alpha_{pirch} = K_F \cos(\phi_{F0} + \dot{\phi}_F(x - x_0)) + K_S \cos(\phi_{S0} + \dot{\phi}_S(x - x_0))$$

x - downrange distance traveled (or time)

 $K_{F,S}$ — magnitudes of the fast and slow oscilations

 $\Phi'_{F,S}$ – frequencies of the fast and slow oscilations

 $\Phi_{0F,0S}$ – phase shifts of the fast and slow oscilations

3) Manually Fit Sinusoid to Wobble Motion

$$K_W \sin(\phi_{W0} + p \cdot t)$$

 K_W is the wobble amplitude φ_{W0} is the wobble motion phase shift p is the projectile's spin rate (known from muzzle velocity) t is time

M110 A2E1 Mass Asymmetry Test June 2015 – Yuma Proving Grounds, AZ

Sample Results: Shot 325

UNCLASSIFIED

Eight projectiles stored on their side at 140°F to induce asymmetry of WP

Four of those projectiles were then re-melted to restore "normal" asymmetry conditions

Range Setup:

QE = 500mils (4 Shots Each)
Firing Azimuth = 86.5° (ENE)
Effective Crossrange Offset = 45m
Effective Downrange Distance = 54m (to trunnion)
Muzzle Velocity: 430m/s

Dual Trajectory "Tracker 2" Systems

Photron Fastcam SA-X2 Color Camera w/ 300mm telephoto lenses recorded at: 2000hz

Tests Results: Alpha-Beta Plots

UNCLASSIFIED

Asymmetry Clearly Evident

Extracted Wobble Motion Plots

UNCLASSIFIED

Comparison to Predicted Results

Predicted Wobble Motion

UNCLASSIFIED

Prediction Model:

$$K_{w}(rad) = \frac{I_{E}}{I_{T} - I_{P} + (\frac{I_{P}^{2}M}{I_{T}P^{2}})} \approx \frac{I_{E}}{I_{T} - I_{P}}$$
 (McCoy, 1999, p. 259)

 I_P is the inertia along the projectile spin axis I_T is the transverse moment of inertia I_E is the product of inertia resulting from the mass asymmetry.

M110A2E1 Average Values:

$$I_T$$
=5755 in²lb
 I_P =555 in²lb

$$K_w(deg) = \frac{I_E}{I_T - I_P} = \frac{I_E}{5755 - 555} \left(\frac{180}{\pi}\right) = \frac{I_E}{90.8 \frac{deg}{in^2 lb}}$$

Results VS. Predicted Values (JUNE 2015 Test)

UNCLASSIFIED

Re-balanced projectiles were not re-measured for June 2015 test

(predicted wobble estimated based on average values for M110A2E1)

Results VS. Predicted Values (Good Data Points February 2016 Test)

UNCLASSIFIED

Follow-up Test (Feb 2016) 17/30 Shots: within 0.025° of predicted value for K_{W}

RESULTS VS. PREDICTED VALUES (ALL DATA POINTS FEBRUARY 2016 TEST)

UNCLASSIFIED

13/30 shots exhibited lower than expected wobble

-may or may not indicate re-settling of WP asymmetry occurred (possibly during setback of cannon launch)

Conclusions

UNCLASSIFIED

- High quality video was successfully captured for all test rounds (including follow-up test) allowing for data analysis
- All white-phosphorous projectiles flew with stability, despite concern of tumbling
- The effect of mass asymmetry is clearly evident
 - Indicates that the Automated Flight Video Analysis (AFVA) method is sensitive to minute fluctuations (<0.01°) in pitch/yaw motion
 - Indicates that the Automated Flight Video Analysis (AFVA) system is capable of measuring these fluctuations within 0.025°
 - Quantifying mass asymmetry from flight video seems plausible
 - Suggests significant advantage over rough precision of yaw-card analysis and high cost of on-board electronics systems
- This precision of pitch/yaw (initial) history measurement should be helpful to other programs

22

References

UNCLASSIFIED

- 1. Carlucci, D. and Jacobson, S., "Ballistics: Theory and Design of Guns and Ammunition," CRC Press, Boca Raton, FL, 2008.
- 2. McCoy, R., "Modern Exterior Ballistics: The Launch and Flight Dynamics of Symmetric Projectiles," Schiffer Publishing, Atglen, PA, 1999.
- 3. Koenig, W., "M110A2E1 Aero Predictions," Aeroballistic Simulations, U.S. Army Armament Research, Development, and Engineering Center, Picatinny Arsenal, NJ, March 2015. (limited distribution)
- 4. Decker, R., Kolsch, M., and Yakimenko, O.A., "A Computer Vision Approach to Automatically Measure the Initial Spin-Rate of Artillery Projectiles Painted with Stripes," *JOTE* 42(4):828–841, July 2014.
- 5. Decker, R., "A Computer Vision-Based Method for Artillery Characterization," Doctoral Dissertation, Naval Postgraduate School, Monterey, CA, December 2013. (limited distribution)
- 6. John, J., "M1122, M483, M110A2E1 Mass Properties and POIs," Measurement Data, U.S. Army Armament Research, Development, and Engineering Center, Picatinny Arsenal, NJ, June 2015. (limited distribution)
- 7. M110 Projectile Images accessed from GlobalSecurity.org, March16, 2016. http://www.globalsecurity.org/military/systems/munitions/m110.htm
- 8. DeMella, D. and Ackerman, E., "155MM Artillery Weapons Systems Reference Data Book," U.S. Army Armament Research, Development, and Engineering Center, Picatinny Arsenal, NJ, May 2009. (limited distribution)

Questions?

UNCLASSIFIED

24

UNCLASSIFIED

Backup Slides: Automated Measurement Methodology (February 2016)

New Automated Data-Extraction Method

UNCLASSIFIED

1) Analyze Pitching Motion Using ALVA (Decker 2013)

2a) Measure FMY and choose best data source for epicyclic fitting

-which camera's data was best?

-during what time interval was data of sufficient quality —

Automated Epicyclic Motion Fitting

UNCLASSIFIED

2b) Perform a initial fit to identify candidate combinations for damped epicyclic parameters

MACS 1: V _{MUZZLE} = 286 m/s			
ф' _F	7.0	Hz	
φ's	1.4	Hz	
$\lambda_{\scriptscriptstyle F}$	-1.6	deg/s	
λ_{S}	-21.8	deg/s	

M203A1 : V _{MUZZLE} = 788 m/s			
ф' _F	20.0	Hz	
φ's	3.7	Hz	
$\lambda_{\scriptscriptstyleF}$	-88.4	deg/s	
λ_{S}	-58.0	deg/s	

(Koenig 2016)

$$\alpha_{pitch,damped} = K_F e^{-\lambda_F(x-x_0)} \cos(\phi_{F0} + \dot{\phi}_F(x-x_0)) + K_S e^{-\lambda_S(x-x_0)} \cos(\phi_{S0} + \dot{\phi}_S(x-x_0))$$

 K_F , K_S , are the fast and slow epicyclic oscillation magnitudes φ_{F0} , φ_{S0} are the fast and slow oscillation phase shifts

 $\varphi_{F}', \varphi_{S}'$ are the fast and slow epicyclic frequencies λ_{F}, λ_{S} , are the fast and slow oscillation damping rates

known values for given velocity

2c) Robust Fit: Artificially increase K_F , K_S , and decrease ϕ'_F , ϕ'_S , then perform least-squares fit to smoothed data in region of highest data fidelity (best complete

2d) Subtract raw UNSMOOTHED pitch measurements from epicyclic fit

$$K_W \sin(\phi_{W0} + p \cdot t) + C_1$$

 K_{W^*} is the wobble amplitude φ_{W0} is the wobble motion phase shift p is the projectile's spin rate (known from muzzle velocity) C_{7s} is the offset from the horizontal axis due to errors in epicyclic motion fitting t is time

3) Automatically fit a shifted sinusoid to the resulting motion. The amplitude of this fit is K_W

Videogrammetry Research

UNCLASSIFIED

- Mechanical Engineer
 - US Army ARDEC Fuze & Precision Armaments Technology Group

- Developed automated analysis algorithms:
 - Artillery flight video analysis (AFVA)
 - Position / velocity
 - Initial orientation (pitch/yaw) history
 - Spin-rate analysis
 - Shape transformation analysis

Additional aerial platforms

Small Caliber Ammo

UAV Tracking

ADS Tracking